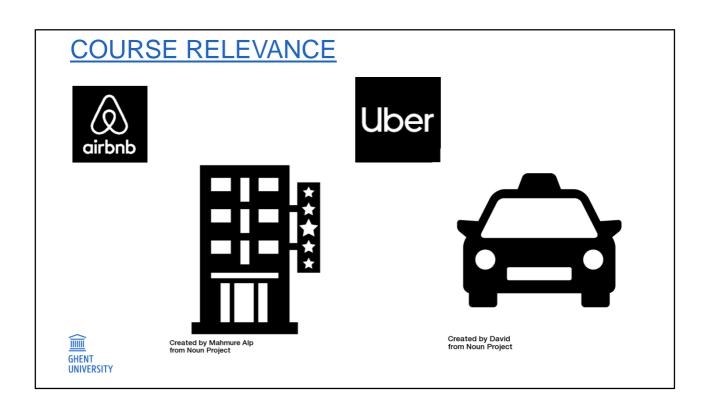


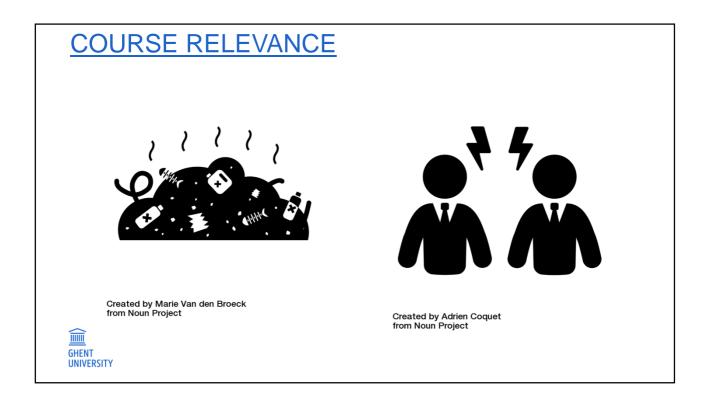
AT YOUR SERVICE FOR THIS COURSE

Lecturer
Prof. Dr. Katrien Verleye

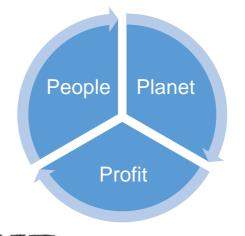
Teaching Assistant
Drs. Evy Van Lancker

GHENT UNIVERSITY


AGENDA


- Course relevance
- Course set-up
- First lecture

COURSE RELEVANCE



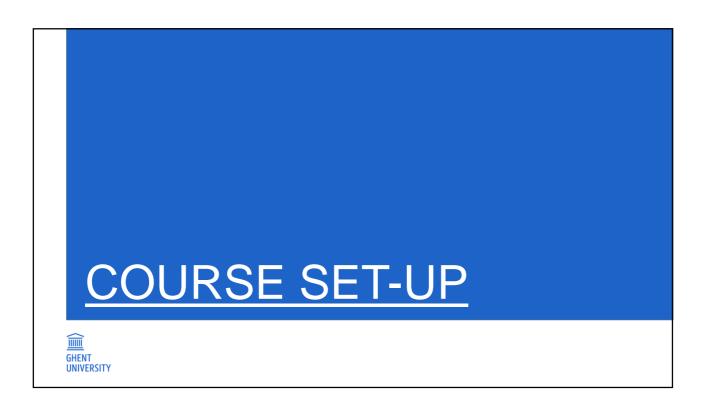
COURSE RELEVANCE

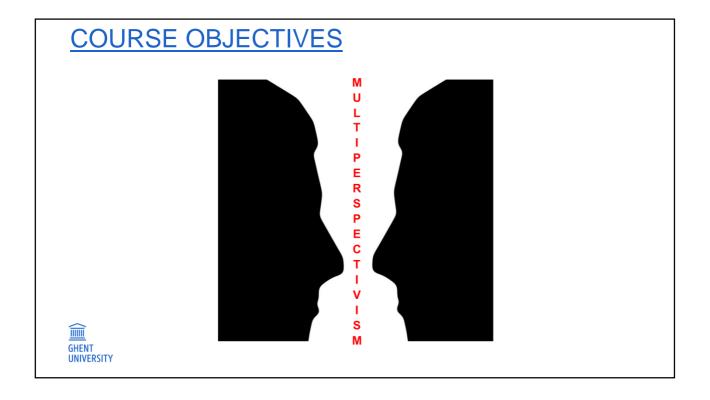
Negative externalities

- Economic
- Environmental
- Social

BUT

GRAND CHALLENGES


COURSE RELEVANCE



COURSE OBJECTIVES

- I. explain the concept of innovation and key **innovation management concepts, models, and techniques** in the innovation literature
- II. analyze complex (inter)national business cases and practices by means of key innovation management concepts, models, and techniques
- **III. discuss** strategic choices concerning innovation and implementing these choices in a **scientific and structured way**
- IV. reflect critically on the effects of strategic choices concerning innovation and the implementation of these choices from an economic, social and ethical perspective.

COURSE MATERIAL

Melissa Schilling "Strategic Management of Technological Innovation", McGraw-Hill International Sixth Edition, 2020

Slides (with notes) and additional course material available through Ufora

Obligatory readings in preparation for special sessions

COURSE FORMAT

Lectures

- content text book
- content additional academic papers

Special sessions

- special session 1: system analysis
- special session 2: case discussions
- special session 3: group experiment

! active participation is required

GRADING & EVALUATION

Group assignment (cf. special sessions)

- Evaluation of
 - application and integration of conceptual knowledge (cf. course objective I, II)
 - way in which application and integration are presented (cf. course objective III)
 - critical reflection (cf. course objective IV)
- Relative weight: 25% (5 out of 20 points)

Written exam

- Evaluation of
 - application and integration of conceptual knowledge (cf. course objective I, II)
 - way in which application and integration are presented (cf. course objective III)
 - critical reflection (cf. course objective IV)
- Closed book exam open questions
- Focus on content from textbook, obligatory readings, lectures, and special sessions
- Relative weight: 75% (15 out of 20 points)

! Assignment is mandatory to pass for this course

GRADING AND EVALUATION Innovatiemanagement Verleye, Katrien Gewogen aantal studenten in statistiek: 433.2 Laatste statistiek: academiejaar 2018 examensessie 3 histogram cumulatief 100 15 Fractie (%) 75 10 50 5 25 0 15 15 20 20 Score (op 20) Score (op 20) $\widehat{\underline{\underline{}}}$ GHENT UNIVERSITY

ORGANIZATION OF THE COURSE			
Date	Who	Focus	Location
February 14	All	Lecture (Intro + Module I)	UZ Gent – Aud. F
February 21	All	Lecture (Module II)	FEB – aud. Picard (or ONLINE)
February 28	All	Special session 1 with guest lecture (Module I)	Stropkaai
March 6	All	Lecture (Module III)	FEB – aud. Picard (or ONLINE)
March 13	Group A	Special session 2 (Module II/III)	ONLINE
March 20	-	Dies Natalis	
March 27	Group B	Special session 2 (Module II/III)	Campus Ardoyen – iGent – Foyer 12.1
April 3	All	Lecture (Module IV)	FEB – aud. Picard (or ONLINE)
April 10/17	-	Easter Holiday	
April 24	Group A	Special session 3 (Module IV)	ONLINE
May 1	-	Labour Day	n.a.
May 8	Group B	Special session 3 (Module IV)	FEB – aud. Picard
May 15	All	Exam guidelines and Q&A	ONLINE
May 19/20	-	Individual feedback by appointment	Office Prof. Verleye (HOV – office 120.018)

ORGANIZATION OF THE LECTURES

Participation in the lectures is **not mandatory**

Choose whether you want to attend the classroom lecture in Aud. Picard or the online lecture via Ufora by 16 February 2020

ORGANIZATION OF THE SPECIAL SESSIONS

Participation in the special sessions is mandatory

Choose group A or B for **Special Session 2 and 3** and register your choice via Ufora by 20 February 2020

IMPORTANT NOTE 1

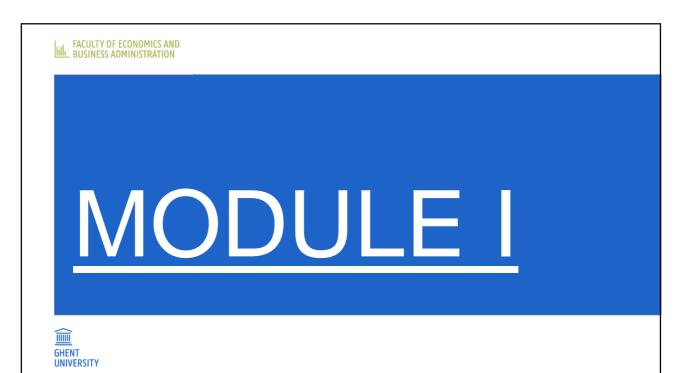
Group A: online instructions: submit deliverables by 27 March 2020 and 8 May 2020 via Ufora Group B: classroom: submit deliverables by end of session (instructions during session)

IMPORTANT NOTE 2

Lecturer will assign students to groups – both in case of classroom sessions and online sessions. Students will be assigned to different groups across the sessions.

COURSE ORGANIZATION

- Send all your questions about the course to <u>Evy.Vanlancker@UGent.be</u> by May 9th, so that these can be answered during the online session on May 15th.
- If you want an individual appointment with Prof. Verleye to get more feedback about the special sessions, please send an e-mail to <u>Evy.Vanlancker@UGent.be</u> by May 9th, thereby expressing your preference for day and time



Any other question: feel free to contact Prof. Verleye via Evy.Vanlancker@UGent.be

COURSE OVERVIEW SYSTEM LEVEL INDUSTRY LEVEL **COMPANY LEVEL PROJECT LEVEL** What is Types / Patterns Design Organizing for Innovation? of Innovation Innovation Strategic Direction Importance of Standards Managing the (Service) **Battles** Collaboration new Product Innovation Development Strategies Modularity and **Process** Systemic Platform Protecting Approach to Innovation Managing New Competition Innovation **Product** Timing of Entry Choose Development Innovation **Teams Projects** Craft a Deployment **MODULE I** Strategy

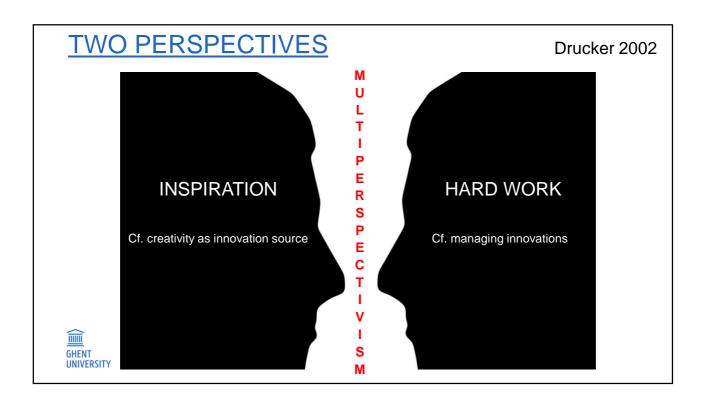
SESSION OVERVIEW

TOPIC	READING MATERIAL
What is innovation	 Schilling - Chapter 1 and 2 Drucker, P. F. (2002). The discipline of innovation. Harvard Business Review, 80, 95-104. Lusch, R. F., & Nambisan, S. (2015). Service innovation: A service-dominant logic perspective. MIS quarterly, 39(1). https://www.forbes.com/innovative-companies/list/#tab:rank
Importance of (service) innovation	 Schilling - Chapter 1 Nidumolu, R., Prahalad, C.K., & Rangaswami, M.R. (2009). Why sustainability is now a key driver of innovation. <i>Harvard Business Review</i>, 87(9): 57-64. Chesbrough, H. (2011). Open Services Innovation: Rethinking your business to grow and compete in a new era. John Wiley and Sons Ltd. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii-full-report-2019.pdf Huang, MH., & Rust, R. (2018)? Artificial Intelligence in Service. <i>Journal of Service Research</i>, 21 (2), 155-172. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en https://www.un.org/sustainabledevelopment/sustainable-development-goals/

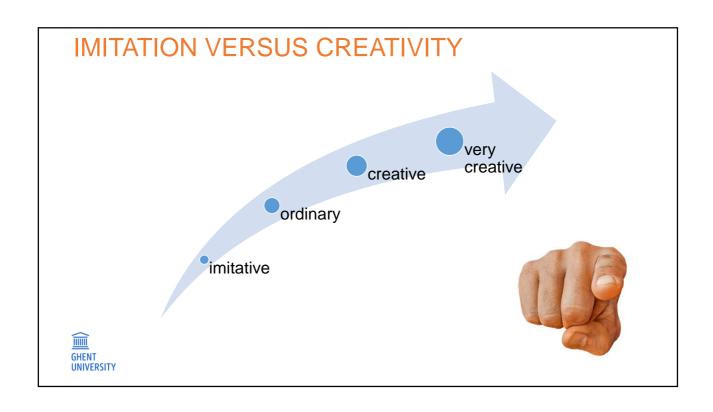
SESSION OVERVIEW

TOPIC	READING MATERIAL
Systemic instruments for managing transformative change	 Wieczorek, A. J., & Hekkert, M. P. (2012). Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars. Science and public policy, 39(1), 74-87. www.ellenmacarthurfoundation.org Vijverman, N., Henkens, B., & Verleye, K. (2019). Engagement and technology as key enablers for a circular economy. In H. Linda & S. D.A. (Eds.), Handbook of research on customer engagement. Edward Elgar.

Background readings for Special Session 1


- Wieczorek, A. J., & Hekkert, M. P. (2012). Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars. Science and public policy, 39(1), 74-87.
- www.ellenmacarthurfoundation.org

WHAT IS INNOVATION?

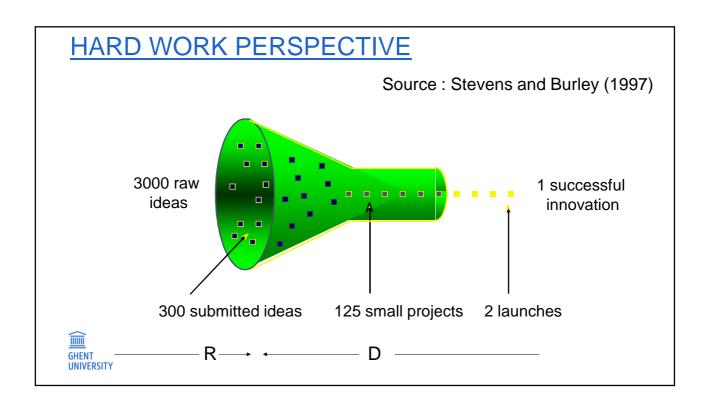


INSPIRATION AS SOURCE OF INNOVATION

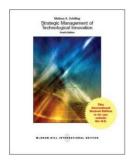
ServiceNow Founder Fred Luddy:

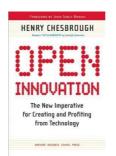
"I've never had an original idea (...) everything that I have ever done in technology has been inspired by something I've seen somebody doing, struggling to do, wishing they could do differently"

DRIVERS OF CREATIVITY


- Motivation
- Personality traits
- Style of thinking
- Intellectual capabilities
- Knowledge
- Environmental factors

MANAGING CREATIVITY


- Unexpected occurrences
- Incongruities
- Process needs
- Industry and market changes
- Demographic changes
- Changes in perception
- New knowledge


Drucker 2002

HARD WORK BEYOND CREATIVITY

INNOVATION

= ideas/invention + implementation/commercialization

DEFINITIONS OF INNOVATION

innovation

/Inə vei[(ə)n/ •)

noun

the action or process of innovating.

"innovation is crucial to the continuing success of any organization"
synonyms: change, alteration, revolution, upheaval, transformation, metamorphosis, reorganization,
restructuring, rearrangement, recasting, remodelling, renovation, restyling, variation;
More

 a new method, idea, product, etc. plural noun: innovations "technological innovations designed to save energy"

=> introducing something new

SCHUMPETER 1934

- Introduction of a good (product), which is new to consumers,
 or one of increased quality than was available in the past
- Methods of production, which are new to a particular branch of industry
- The opening of new markets
- The use of new sources of supply
- New forms of competition, which lead to the restructuring of an industry

PORTER 1990

- Improvements in technology
- Better methods or ways of doing things
 - => manifested in:
 - product changes
 - process changes
 - •new approaches to marketing
 - new forms of distribution
 - •
 - => resulting from:
 - ■formal R&D
 - organizational learning

ROGERS 1995

INNOVATION

= an idea, practice, or object that is **perceived as new** by the individual or other unit of adoption

DIFFERENT LEVELS OF NEWNESS

New-to-the-world product

New-to-thecompany product

Platform product

Addition to product line

Derivative product

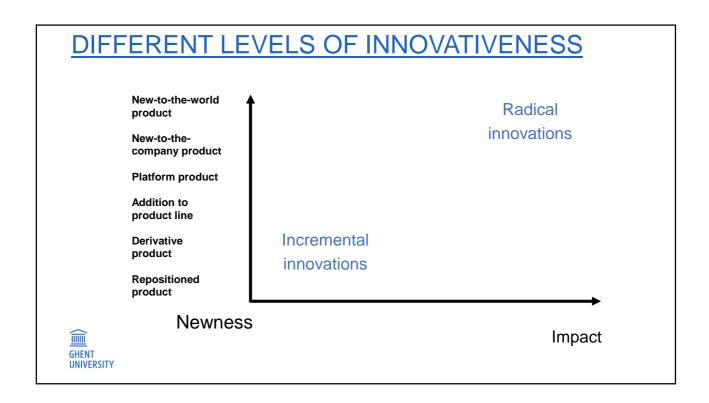
Repositioned product

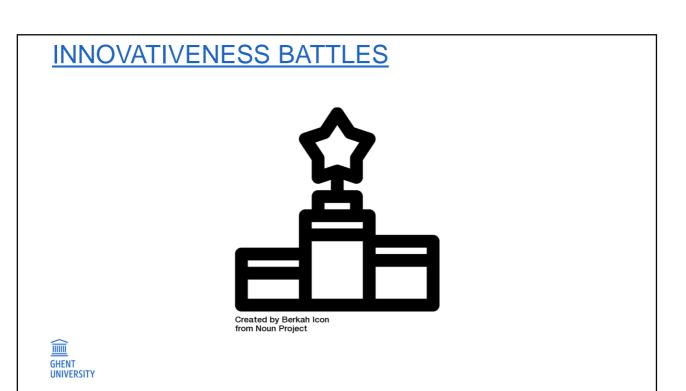
Inventions that create a whole new market

Products that take a firm into a category new to it

Appliance whose basic design and some components are used in several products of a product family

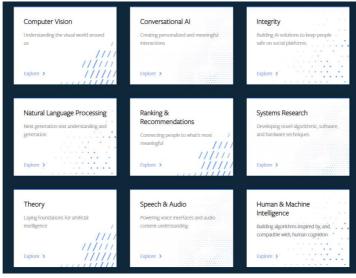
Line extensions and flankers that flesh out the product line in current markets


Improvements and revisions to existing products


Products that are retargeted for a new use or application.

Newness

RANKING BOSTON CONSULTING GROUP 2018 EXHIBIT 1 The Most Innovative Companies of 2018 Airbnb Apple Siemens (II) Intel 3M Google SpaceX Unilever NTT Docomo O SAP Microsoft¹ BASF Daimler³ DuPont Expedia Tencent AXA InterContinental Hotels Group Hewlett-Packard 63 Johnson & Adidas Oisney Cisco Systems **BMW** JPMorgan Chase Huawei Toyota Missan Nissan Bayer Procter & Gamble General Electric Pfizer Dow Chemical Verizon Uber Orange Time Warner AT&T Philips Alibaba Marriott @ Renault Allianz Nestlé $\widehat{\underline{}}$ https://www.forbes.com/sites/innovatorsdna/2018/05/29/how-we-GHENT UNIVERSITY rank-the-most-innovative-companies-2018/#3f2075e81e3c


INNOVATION TRENDS

- The "most innovative companies in the world" extensively use **Artificial Intelligence** (AI)
- Innovation is a team effort, as "the most innovative companies in the world" increasingly engage in collaborative platforms/ecosystems to create products, services, and business models

RISE OF AI

IIIIIII GHENT UNIVERSITY

https://ai.facebook.com/research

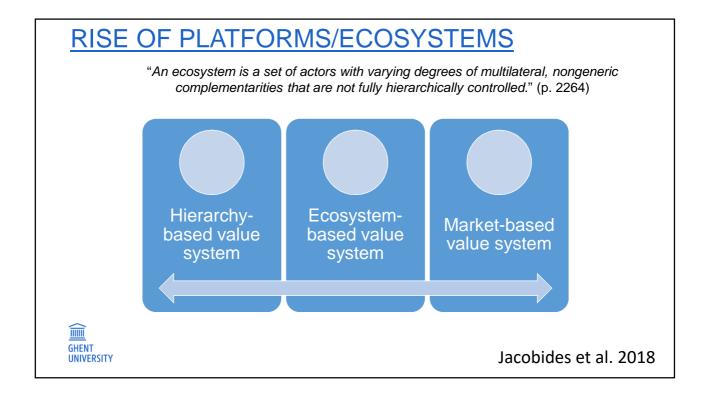
RISE OF AI


Neural Networks

Apply cutting-edge research to train deep neural networks on problems ranging from perception to control. Our per-camera networks analyze raw images to perform semantic segmentation, object detection and monocular depth estimation. Our birds-eye-view networks take video from all cameras to output the road layout, static infrastructure and 3D objects directly in the top-down view. Our networks learn from the most complicated and diverse scenarios in the world, iteratively sourced from our fleet of nearly IM vehicles in real time. A full build of Autopilot neural networks involves 48 networks that take 70.000 GPU hours to train 6. Together, they output 1,000 distinct tensors (predictions) at each timestep.

Autonomy Algorithms

Develop the core algorithms that drive the car by creating a high-fidelity representation of the world and planning trajectories in that space. In order to train the neural networks to predict such representations, algorithmically create accurate and large-scale ground truth data by combining information from the car's sensors across space and time. Use state-of-the-art techniques to build a robust planning and decision-making system that operates in complicated real-world situations under uncertainty, Evaluate your algorithms at the scale of the entire Tesla fleet.


Code Foundations

Throughput, latency, correctness and determinism are the main metrics we optimize our code for. Build the Autopilot software foundations up from the lowest levels of the stack, tightly integrating with our custom hardware. Implement super-reliable bootloaders with support for over-the-air updates and bring or ustomized Lirux kernels. Wrife fast, memory-efficient low-level code to capture high-frequency, high-volume data from our sensors, and to share it with multiple consumer processes— without impacting central memory access latency or starving critical functional code from CPU cycles. Squeeze and pipeline compute across a variety of hardware processing units, distributed across multiple system-on-chips.

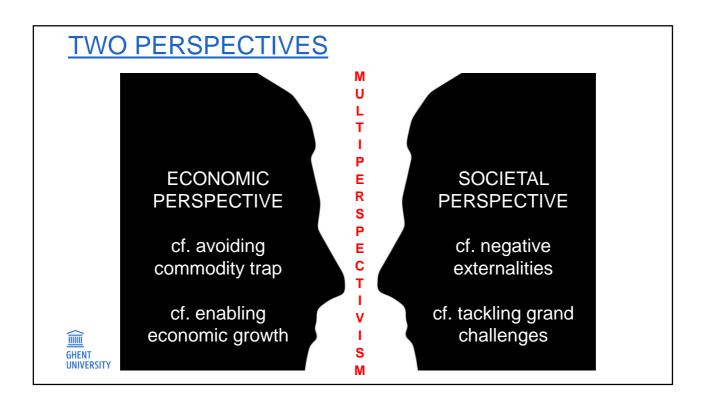
https://www.tesla.com/autopilotAl

ANY INNOVATION IS A SERVICE INNOVATION

 Shift from focus on tangible goods to associated or stand-along intangible offerings (knowledge and skills)

! including offerings with information-centric focus

 Shift from features and attributes of innovation output to the value that is cocreated with other actors in the use of innovations and other resources



Lusch and Nambisan 2015

IMPORTANCE OF (SERVICE) INNOVATION

AVOIDING THE COMMODITY TRAP

Competitive success

- CUSTOMER ADVANTAGES
 - Production of differentiated products and services
 - Closer fit with customer needs
- FIRM ADVANTAGES
 - Protection of margins
 - Lower costs

Schilling (2020)

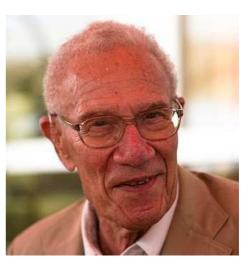
AVOIDING THE COMMODITY TRAP

	#1	#2	#3	#4	#5
Market value 2019	Apple (US)	Microsoft (US)	Amazon (US)	Alphabet (US)	Berkshire Hathaway (US)
Profits in 2019	Apple (US)	ICBC (China)	Samsung Electronics (South Korea)	China Construction Bank (China)	JP Morgan Chase (US)
Sales 2019	Walmart (US)	Sinopec (China)	Royal Dutch Shell (Netherlands)	PetroChina (China)	BP (UK)
Assets 2019	ICBC (China)	China Construction Bank (China)	Agricultural Bank of China (China)	Bank of China (China)	JP Morgan Chase (US)

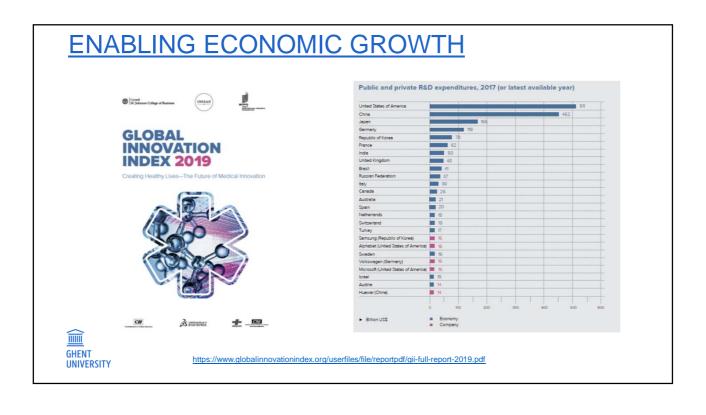
ENABLING ECONOMIC GROWTH

(technological) innovation

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17120276


ENABLING ECONOMIC GROWTH

Solow Growth Model

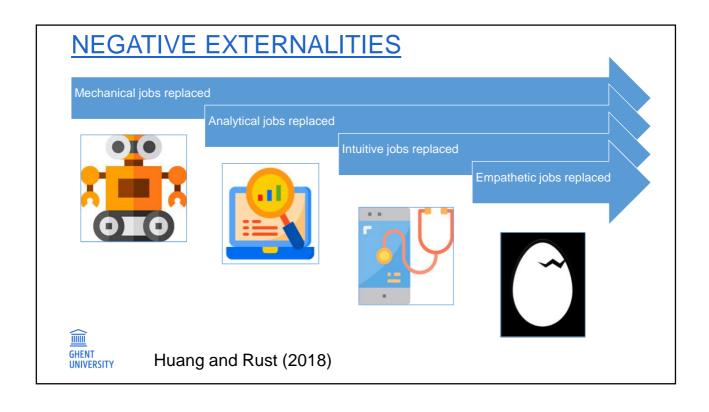

- Capital
- Labour
- Technological innovation (SOLOW RESIDUAL)

Schilling (2020)

By Olaf Storbeck from Düsseldorf, Deutschland CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=12675493

NEGATIVE EXTERNALITIES

= costs (or benefits) that are borne (or reaped) by individuals other than those responsible for creating them (Schilling, 2020)


NEGATIVE EXTERNALITIES

"A major challenge facing society is discovering new ways to grow economies without growing environmental impacts, commonly referred to as "decoupling" economic growth from environmental degradation."

(Lanoie, 2014)

NEGATIVE EXTERNALITIES

- "Amazon scraps secret AI recruiting tool that showed bias against women" (Reuters, October 10, 2018)
- "How to design AI that eliminates disability bias"
 (Financial Times, January 26, 2020)
- "Racial bias observed in hate speech detection algorithm from Google" (TechCrunch, August 15, 2019)

NEGATIVE EXTERNALITIES

"Europa wil geen monsterlijke AI [Europe does not want a monstrous AI]" (De Standaard, February 6th, 2020)

TACKLING GRAND CHALLENGES

"Commission will explore measures to ensure that digital technologies such as artificial intelligence, 5G, cloud and edge computing and the internet of things can accelerate and maximise the impact of policies to deal with climate change and protect the environment"

(European Green Deal, 2019, p. 9)

TACKLING GRAND CHALLENGES

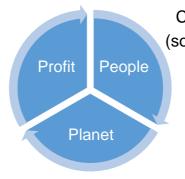
"New technologies, sustainable solutions and disruptive innovation are critical to achieve the objectives of the European Green Deal"

(European Green Deal, 2019, p. 18)

TACKLING GRAND CHALLENGES

"The coming years will be a vital period to save the planet and to achieve sustainable, inclusive human development'

(António Gutteres, Secretary-General, **United Nations**)



UNIVERSITY

SUSTAINABILITY AS NEW FRONTIER

Increased recognition of importance of serving all stakeholders with innovation - not only shareholders

Cf. business value (technological and business model innovation

Cf. social value (social innovation)

> Cf. environmental value (green innovation)

SUSTAINABILITY AS NEW FRONTIER

"... sustainability is a mother lode of organizational and technological innovations that yield both bottom-line and top-line returns. (...) In fact, we find that smart companies now treat sustainability as innovation's new frontier."

(Nidumolu, Prahalad & Ramaswamy, 2014)

BUT

importance of **systemic approach** to stimulate sustainability oriented (technological) innovation

(Wieczorek and Hekkert, 2012)

SYSTEMIC APPROACH TO INNOVATION

IMPORTANCE OF SYSTEMIC APPROACH

The **speed** and **direction** of processes oriented towards creating sustainable innovation depend on the **systems** in which these processes are embedded

- national/regional systems
- sectoral systems

NARROW BROAD

- technological systems
- ...

(Wieczorek and Hekkert 2012)

STRUCTURAL ELEMENTS OF A SYSTEM

Categories	Subcategories
ACTORS	 Civil society Companies: start-ups, SMEs, multinationals, Knowledge institutes: universities, schools, research centers, Government NGOs Other parties: financial organizations, intermediaries, knowledge brokers, consultants,
INSTITUTIONS	Hard: rules, laws, regulations, instructions,Soft: common habits, routines, practices, traditions,
INTERACTIONS	Level of individual contactsNetwork level
INFRASTRUCTURE	 Physical: machines, roads, buildings, networks, bridges, Knowledge: expertise, know-how, strategic information, Financial: subsidies, financial programs, grants,
GHENT UNIVERSITY	(Wieczorek and Hekkert 2012)

FUNCTIONAL ELEMENTS OF A SYSTEM

Entrepreneurial activities

Knowledge development

Knowledge diffusion

Guidance of the search

Market formation

Mobilization of resources

Creation of legitimacy

(Wieczorek and Hekkert 2012)

SYSTEMIC PROBLEMS

= problems that hinder the development of an innovation system and/or system change/transformations

Systemic problem	(Type of) systemic problem
Actor problems	Presence? Capabilities?
Interaction problems	Presence? Quality?
Institutional problems	Presence? Quality?
Infrastructural problems	Presence? Quality?

(Wieczorek and Hekkert 2012)

SYSTEMIC INNOVATION POLICY FRAMEWORK

- 1. Identify function of system
- 2. Map structural elements of the system

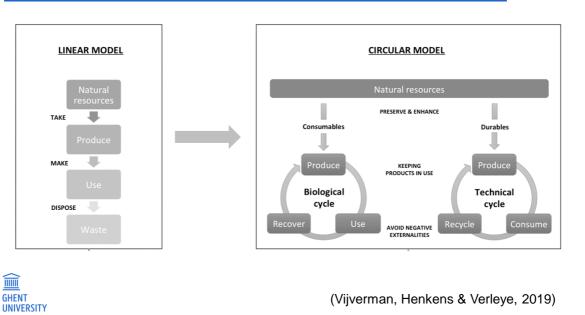
= coupled functional-structural analysis

- 3. Identify systemic problems
- 4. Selection of strategies to tackle problems (cf. goals of systemic instruments)
- 5. Design systemic instruments

Goal of systemic instruments

- Stimulate and organize participation of relevant actors
- · Create space for actors capability development
- Stimulate occurrence of interactions
- · Prevent too strong and too weak ties
- Secure presence of hard and soft institutions
- Prevent too weak and too stringent institutions
- Stimulate physical, financial and knowledge infrastructure
- Ensure adequate quality of infrastructure

(Wieczorek and Hekkert 2012)


SWEDISH RENEWABLE ENERGY SYSTEM

Systemic problem	(Type of) systemic problem	Jacobsson and Johnson (2000)
Actor problems	Presence? Capabilities?	Poorly articulated demand
Interaction problems	Presence? Quality?	Legislative failure
Institutional problems	Presence? Quality?	Poor connectivity Wrong guidance Market control by incumbents
Infrastructural problems	Presence? Quality?	Failure in educational system

(Wieczorek and Hekkert 2012)

SHIFT TOWARDS A CIRCULAR ECONOMY

SPECIAL SESSION 1

1. Choose a sector (plastics, fashion, or finance)

- 2. Brainstorm about systemic problems that may hinder the transition towards circular economy in the sector
- 3. Brainstorm about the goals of systemic instruments and systemic instrument design to facilitate the shift to a circular economy in the sector
- List questions for Executive Lead of Ellen MacArthur Foundation to gain more insight and/or validate the identified systemic problems, goals of systemic instruments, and systemic instrument design
- Appoint a spokesperson to address your questions for Executive Lead of Ellen MacArthur Foundation during Special Session 1

3. After guest lecture in Special Session 1, prepare a one-pager with a description of systemic problems (min. 3) and for each of these problems a systemic instrument to tackle it (incl. goals of these instruments)

! IMPORTANT: more detailed instructions during Special Session 1